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INVOLUTE STRl P DEVELOPMENT METHOD FOR FABRICATION OF ROTATIONALLY 

SYMMERICAL DOUBLE CURVED SURFACES OF REVOLUTION 

by Rene E. Chambellan and Eugene J. Pleban 

Lewis Research Center 

SUMMARY 

Many methods are available for the approximate development of double curved sur-  
faces of revolution onto a plane. The method presented in this report differs from 
others in that a se t  of constant-width curved s t r ips  (ribbons) or  tubes can be used to re- 
produce any surface of revolution. This feature is of particular interest in the design of 
heat exchangers, where a uniform distribution of heat-transfer tubes may be required 
over a surface of revolution. Two important examples of this type a re  tube-type rocket 
nozzles and fuel-cooled nozzle plugs for jet engines. 

matching the elemental curved s t r ip  from the shell development. 
elemental-strip joint is easily made and inspected. 
bly can be formed over a mandrel and joined at the s t r ip  edges to form the shell. The 
tubes can be either internal or  external to the shell. 

First, the surface of revolu- 
tion is divided into a ser ies  of coaxial intersecting right-circular cones, cylinders, and 
annulii, as appropriate. These single curved surfaces are then developed onto a single 
plane where each of these surface elements must have a particular orientation with re -  
spect to its contiguous element. Second, these surface elements a re  then further sub- 
divided into curved strips of constant width. Winding these strips over a mandrel, rep- 
resenting the original surface of revolution, produces the surface of revolution. The 
development can be accomplished either graphically or  by means of a digital computer 
program; both methods are presented in this report. 

symmetrical surfaces of revolution. However, extension of the principle can be made to 
include more complicated surfaces. It is not possible to completely cover, with 
constant-width strips with no overlapping, closed surfaces of revolution such as spheres 
and streamlined bodies. The curved strips have a finite width and therefore require a 
finite pole circle whose circumference is equal to the s t r ip  width times the number of 
strips.  An exception to this is the development of a toroid, since it is possible in this 
case to completely cover the surface. 

In application to a tube-type heat exchanger, the tubes a r e  preformed into a curve 
The tube-to- 

After joining, the tube-strip assem- 

The surface development is performed in two steps. 

The development procedures presented in this report  a r e  limited to rotationally 



INT R OD U CT ION 

This report presents a method for developing a double curved surface of revolution 
into f l a t  ribbons. The development method is presented both as a graphical procedure 
and as a digital computer program. The development is accomplished by developing a 
series of cones, cylinders, and plane annulii, which are used to closely approximate the 
original surface, and by then subdividing the developed surfaces into curved ribbons. 

Many methods are available for producing double curved thin shells of revolution 
(refs. 1 and 2). Generally, the material for the formation of a double curved shell of 
revolution is initially in the form of flat sheet stock, conical or cylindrical shells, small 
preformed shell segments, or thick shells 
be spun, stretch-formed, bent, machined, and welded to produce the desired shape. 

In the course of developing a construction method for a fuel-cooled jet engine nozzle 
plug, where the cooling tubes a r e  to be located and uniformly spaced on the inside sur- 
face of the plug shell, it became apparent that direct access to the tube-shell joint would 
be necessary to ensure an adequate connection. A method, described in this report, has 
been evolved whereby a rotationally symmetric shell can be developed approximately 
into identical planar ribbon strip-elements. In the case of a nozzle plug, these s t r ips  
a r e  joined with the cooling tubes, and then these subassemblies are formed to produce 
the plug shell. The identical procedure can be used to produce Subassemblies for the 
construction of tube-type rocket nozzles. 

exchanger-type structures. Surfaces where the axis of symmetry pierces the surface of 
revolution require a pole circle of finite size. The holes in the surface of revolution 
represented by the pole circles can be closed, in practice, by suitably formed shallow 
double curved surfaces. A toroidal surface does not have this limitation. 

As appropriate, these material forms can 

The development method presented herein is general and not restricted to heat- 
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Subscripts : 

i 

j 

m 

n 

S 

0 

curvilinear length of composite involute 

orthogonal coordinate axes 

angle between radius vector and axis normal to evolute where involute 
starts 

increment 

angle between tangent to an involute and axis normal to evolute where in- 
volute starts 

angle about u-axis measured in plane parallel to v-w plane 

number of elemental composite involute strips 

slant height of conical element or  radius vector in plane of development 

one-half vertex angle of right-circular cone 

increment in the angle 0 

width of elemental composite involute strip 

index number, 1 or  2 

index number, 1 or  2,  identifying extremities of element of surface of rev- 
olution 

integer, identifying intermediate radii of cone n 

integer identifying particular element of subdivided surface of revolution 

identifies locations between j = 1 and j = 2,  1 5 - -  s 5 2 

indicates involute generating circle 

SUBD VISION OF SURFACES OF REVOLUTION INTO INVOLUTE STR 

Subdivision of Plane Surfaces 

PS 

The development of right-circular truncated cones and cylinders onto a plane results 
in geometric figures which are segments of annulii or  rectangles, respectively. Plane 
annulii and segments of annulii can be subdivided by families of involute curves whose 
evolutes (circles herein) a r e  concentric and equal to or  smaller than the inner circle of 
the annulus considered. If the spacing of the involutes in the family is made uniform, a 
plane annulus can be subdivided into a number of identical curved strips whose sides are 
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Figure 1. - Plane c i rcu la r  a n n u l u s  subdivided by involute strips. 
Figure 2. - Rectangle subdivided by involute strips, wi th 

center of evolute c i r c le  at inf ini ty. 

parallel (see ref. l),  as shown in figure 1. Recognizing that the cylinder is the limiting 
case of a cone (with zero apex angle), then the development will be a rectangle and the 
family of involute curves will degenerate into straight parallel lines, as shown in fig- 
ure 2 .  These straight lines a re  developed helices and a re  the limiting case for the in- 
volute, since the developed helix can be generated by an involute generating circle lo- 
cated at infinity. 

Subdivision of Double Curved Surfaces of Revolution 

Double curved surfaces of revolution cannot be exactly developed onto a plane. 
These surfaces can be approximated by a ser ies  of colinear right-circular cones, right- 
circular cylinders, and plane annulii, as appropriate. Since these latter surfaces are 
single curved, they can be developed. The larger the number of surface-approximating 
elements, the greater the accuracy of the development. 

curved ribbons is shown in figure 3 .  The top of the figure shows a 1 5 O - 1 5 '  isometric 
view of the surface, and the lower portion of the figure shows the developed curved 
ribbon. 

A typical example of the development of a double curved surface of revolution into 
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Center l ine of composite 

15" - 15" Isometric projection 

Developed composite involute ribbon 

Figure 3. - Open-ended streamlined surface o f  revolution ( jet engine nozzle plug). 

Development of Typical S u rfaces of Revolution 

In the development of surfaces of revolution such as partial spheres, annulii, rocket 
thrust chambers, and open-ended streamlined bodies, the smallest pole circle that can 
be covered by the strips, with no overlapping, will have a circumference equal to the 
product of the s t r ip  widths and the number of strips. Examples of these representative 
bodies of revolution are shown in figures 3,  4, 5, and 6 which a r e  an open-ended 
streamlined surface, an open-ended sphere, a toroid, and a rocket thrust chamber, re-  
spectively. 
s t r ip  centerline and the developed involute strip. 
generated by a computer program described in appendix B based on equations derived in 
appendix A. 

These figures show an outline of the body, the trace of one involute ribbon 
These figures were drawn from data 
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Centerl ine of composite 
involute ribbon --, 

\ 

15" - 15" Isometric projection 

Developed composite involute ribbon 

Figure 4. -Open-ended spherical surface. 

Centerl ine of segment 
o r  composite involute ribbon 

./.-\u150 w - 150 Isometric projection 

1 .  
1' 

~ 

Developed segment of composite involute ribbon 
(ent i re  ribbon i s  series of these segments). 

Figure 5. -Toroid. 
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Centerl ine of composite 

Developed composite involute ribbon 

Figure 6. - Rocket t h r u s t  chamber assembly, 

Accuracy of Method 

The accuracy of the surface of revolution constructed from the developed involute 
ribbon strips is dependent on the s t r ip  width and the number of single curved surface- 
approximating elements such as cones, cylinders, and plane annulii. The greater the 
number of strips and elemental surfaces of revolution, the more accurate the develop- 
ment will  be. Thus, in practice, the original double curved surface of revolution can 
be approximated as closely as desired. 

The precision of the development procedure is greatly enhanced when a numerical 
computation method is used in place of a graphical method. 
ful for checking results and for preliminary design; however, a final design should be 
done by the numerical computation method. The precision of the graphical method where 
very small  cone apex angles a r e  encountered suffers because very large radii of curva- 
ture a r e  required in the plane development and the involute generating circle is far re- 
moved, in many cases far off the drawing board. In either method of development, 
e r r o r s  in the development process a r e  cumulative; however, in the numerical method, 
these e r r o r s  can be reduced by increasing the precision of the numbers used. In the 
graphical method, the only way to improve precision is to enlarge the scale of the draw- 
ing, which quickly becomes impractical. 

Graphical methods a r e  use- 

Met hod of Development 

The single curved surface of revolution approximating elements can be established 
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s o  as to obtain an equivalent surface where either the external or the internal envelope 
is preserved. In either case, the axis of symmetry is subdivided into lengths which are 
not necessarily equal. In the former case (external envelope), 'the radii to the actual 
surface are obtained at the selected points along the axis. In the latter case (internal 
envelope), the radii to the intersections of contiguous approximating elements, which are 
tangent to the actual surface, a r e  obtained. The relative magnitudes and positions of 
consecutive radii establish whether the approximating element is a cone, a cylinder, or 
an annulus. If a mathematical formula is available, describing the shape of the surface, 
the former approximation is less cumbersome, assuming that the determination of radii 
is a computational instead of a graphical procedure. Neither approach is superior for 
graphical measurements. 

ical procedure. Expressing the procedure in terms of mathematical symbolism is then 
more easily accomplished by the use of geometric relations. 

and developed by a graphical method. Figure 7(a) shows a longitudinal cross section of 
the surface of revolution. 
cones, shown as solid lines in the cross section, a r e  used to approximate the original 
surface. These cones a r e  the surface-approximating elements and a r e  shown as seg- 
ments of plane annulii in the plane of development (fig. 7(b)). The relative positions of 
the developed cones a r e  dependent on the conditions which require that the segments of 
the composite involute curve be continuous and tangent at the juncture of adjacent devel- 
oped cones. The developed cones must also be tangent at the junction point. 

The reason for using involute curves for the subdivision of the developed surface- 
approximating elements is that a family of involutes a r e  all parallel (ref. 3) .  Thus, a 
plane surface can be subdivided into any arbitrary number of similar contiguous areas.  
The use of many involutes in the family produces subdivisions which a r e  ribbon-like in 
configuration. 

Since the surface -approximating elements (cones in our example) a r e  single curved, 
their development is exact and, therefore, any subdivision of the development will suffer 
no distortion when the cones a r e  transformed to surfaces of revolution. This conclusion 
leads to the concept that the conical surface can also be constructed of strips defined by 
a family of involutes in the development plane. 

A complication ar ises  when the involute strips a r e  to be made continuous (in the de- 
velopment plane) in going from one surface-approximating element (cones) to the next. 
Since the developed contiguous surface elements can be tangent at a single point only on 
each boundary, the edges of the involute strip in proceeding from one element to the next 
would suffer a discontinuity. 
involute curve can be defined which passes through each juncture point of the developed 

The development of surfaces of revolution can be more lucidly explained as a graph- 

An open-ended streamlined surface of revolution has been selected as an example 

The actual surface is indicated by a dot-dash line. Truncated 

However, a smooth and continuous, single composite- 
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la) Half cross section of open-ended streamlined surface of revolution showing surface-approximating 
cones where ~112  plOL p 5 *  

Common tangent pint 
for involutes and cones-, Developed cone 4 -, 

-.- Developed cone 5 
Involute 2 J’ 

Developed cone 2 - 

Common tangent point for involutes and cones 

(bl Graphical development of  double curved surface of revolution shown in f igure 7(a) (see fig. 10 for method of  generating involute). 

Figure 7. -Graphical  development of open-ended streamlined surfaceof revolution. (Circles designated by Pno (n = 1,2,3,...) 
are involute generating circles. I 

surface-approximating elements. 
an involute ribbon s t r ip  and to locate all the points of tangency of the developed surface- 
approximating elements. 

In this example, the development is started with cone 1, which is shown as a segment 
of a circular annulus in the plane of development. 
circle is determined from an assumed number and width of strips, consistent with the re- 
quirement that the product of number of strips times strip width cannot exceed the small- 
es t  circumference of the surface of revolution. 

(eq. (A9)); therefore, the radius of the first involute general circle is Pno - 28 sin ‘pn 

This composite curve is then used as the centerline of 

The radius of the involute generating 

In appendix A it is shown that, in general, 
- 

where r10 = v 0 / 2 ~  (from eq. (A?)) and is limited by the requirement that ‘51 2 rl0 and 
> r  rll = 10‘ 
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The center of each involute generating circle is coincident with the a r c  center of its 
corresponding developed cone. 
ment, passing through the inner cone a r c  on to the exterior a r c  of the cone where it is 
terminated. This termination point is where the developed cone 2 is then made tangent 
to cone 1. This means that the center of the a r c  for developed cone 2 is colinear with a 
line drawn through the point - of cone tangency and the center of cone 1. In figure 7 (b) 
this line is indicated as b e .  

At the a rc  center for cone 2, a new involute generating circle is drawn whose radius - 
is p20. Graphically, this radius is obtained by - extending the involute generating line b a 
to c .  
center of developed cone 2. The line segment e c is then the radius p20, obtained from 
equation (A9). 

the extended tangent line 4 c rolls around circle e .  This involute segment is generated 
until it intersects the outer a r c  of developed cone 2.  This process is repeated for suc- 
cessive cones. The a r c  of developed cone 4 has its center on the other side of the com- 
posite involute curve for cones 1, 2, and 3; which is due to the fact that the slope of 
cone 4, in figure 7(a), is opposite to that for cones 1, 2, and 3. In general, this alter- 
nation of the developed cone centers will occur whenever the composite involute curve 
crosses its tangent. Using this composite involute curve as a centerline, a ribbon of 
width w can now be drawn which is a developed surface element of the double curved 
surface of revolution. 

The first involute curve is drawn, in the plane of develop- 

Point c is where a line perpendicular to - b G ,  extended, passes through the a r c  

- 
The point b on the line - b c traces the involute of circle e on the developed cone 2, as 

Two deviations from the original surface of revolution occur in the surface as con- 
structed from the developed involute ribbon strips.  
volute s t r ips  form single curved surfaces and introduce a slight kink at the juncture of 
each surface-approximating element in the surface of revolution. These e r ro r s  can be 
reduced to produce any degree of accuracy desired by increasing the number of surface- 
approximating elements and involute ribbon strips.  

These deviations a r e  that the in- 

DISCUSS ION 

Applications to Heat-Exchanger Design 

There a re  many methods available for the approximate graphical development of 
double curved surfaces of revolution onto a plane (refs. 1 and 2).  The method presented 
in this report differs from others in that a number of-identical constant-width strips can 
be used to reproduce many surfaces of revolution. This feature should be of particular 
interest in the construction of heat exchangers where a uniform distribution of heat- 
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transfer tubes is required over a double curved surface of revolution. 
structures of this type are tube-type rocket nozzles and the fuel-cooled nozzle plug for a 
jet engine. 

Regeneratively cooled tube-type rocket nozzles, where the involute ribbon strip 
method of development is used, can be constructed of constant-diameter tubing from the 
front end of the combustion chamber, through the throat, to the end of the expansion sec- 
tion. The number and size of tubes wil l  be dictated by the requirements of critical heat- 
transfer regions in the nozzle assembly. The tube assembly, as in conventional designs, 
must be supported by a pressure-tight structure in order to contain the chamber pres- 
sure. 

Two important 

Cooling a jet engine nozzle plug with liquid fuel can be accomplished by attaching 
cooling tubes to the shell which forms the plug. Since the plug is in a high-velocity, 
high-temperature gas stream, it is desirable to protect the coolant tubes, which gener- 
ally will  be thin-walled and small in diameter. A direct approach is to install the tubes 
on the inside surface of the plug. One method for accomplishing this installation is to 
fasten the tubes to the developed involute ribbon strips for the plug shell before assembly 
into the shell form. In this way the fastening is simplified and inspection of the tube- 
s t r ip  joint is facilitated. 
drel, the tube and the s t r ip  can be preformed individually in a fixture to match a space 
curve identical to the composite involute on the surface of revolution. Assembly of the 
shell with the tube-strip elements would require a certain amount of springing over the 
mandrel for the plug. 
welding of the faying surfaces of adjoining strips. 

If the tube-strip assembly is too difficult to shape over a man- 

The final operation required to complete the plug would then be 

Con st ruction Problems 

Partially closed spherical shells and streamlined body shells or  closed toroidal 
shells have a common assembly problem. 
support or mandrel is required for the retention of the involute strip during assembly 
and joining. The mandrel must be able to withstand welding or  brazing operations. If a 
low-melting-point material is used for the mandrel structure, provisions must be made 
to insulate the material at those locations where welding or  brazing is done. For a 
furnace-braze-type of joint, the mandrel could be made from materials such as plaster of 
paris which could be dissolved out of the assembly after joining. Since in all these struc- 
tures, with the exception of the annulus, two holes must be left in the shell (where the 
composite involutes start and end), it is conceivable, depending on hole size, that col- 
lapsible mandrels might be devised. 

In each case, some sor t  of internal removable 

In this event, the mandrels could be reusable. 
Where shell thicknesses are large, the involute strips would have to be preformed to 
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the final shape of the space curve, sprung into place over a temporary support, and tack 
welded to the adjacent strip. Before the shell is completely formed, the temporary sup- 
port may have to be removed, unless sufficient access was provided at the end holes. 

SUMMARY OF RESULTS 

The results of this investigation of the involute s t r ip  development method for fabrica- 
tion of rotationally symmetrical double curved surfaces of revolution can be summarized 
as follows: 

1. Four types of rotationally symmetrical surfaces of revolution have been developed 
by the involute ribbon method and presented in this report. These surfaces a re  (1) a par- 
tially closed streamlined body, (2) a rocket thrust chamber assembly, (3) a partially 
closed sphere, and (4) an annulus. The involute ribbons a r e  the plane developed elements 
of the parent double curved surfaces of revolution. 

face of revolution is dependent on the approximation of the surface shape by means of a 
ser ies  of contiguous cones, cylinders, and plane annulii, as appropriate. The greater 
the number of these approximating surface elements, the better the accuracy of the de- 
velopment. Since all these approximating elements a r e  single curved surfaces, they can 
be developed exactly onto a plane surface. In a plane, one set of curves which are par- 
allel is a family of involutes. A developed helix is the limiting case for an involute. In 
a practical application, an involute ribbon would be used in place of the s t r ip  just defined. 
The composite involute curve obtained in going from one surface-approximating element 
to the next would then be the centerline of the ribbon. The development method can be 
accomplished graphically or by means of numerical computations. In the computational 
approach, the graphical method is reduced to the use of mathematical formulas where 
the composite involute curve is described in a suitable coordinate system. 

ment method. 
surface-approximating elements (cones and cylinders). 

multitude of required construction lines obfuscate the drawing. 
small  apex angles require the use of very long radii of curvature in the plane of develop- 
ment. 

2. The generation of the specific composite involute ribbon for a double curved sur-  

3 .  The computational approach produces better results than the graphical develop- 
In either method, accuracy can be improved by increasing the number of 

4. The graphical involute development method can be very complicated because a 
In addition, cones with 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 16, 1970, 
720- 03. 
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APPENDIX A 

DEVELOPMENT OF THEORY 

DERIVATION OF EQUATIONS 

The detailed derivation of the equations for  developing a rotationally symmetrical 
The equations for defining the surface of revolution is presented in the following text. 

centerline of a composite involute s t r ip  will be developed for a general surface of revo- 
lution which is composed of the basic surface elements of cone and cylinder. The plane 
annulus is a special case of the cone with a vertex angle of R radians. In figure 8 are 
shown the basic elements for approximating any surface of revolution. By using many 

U 
symmetry 

Figure 8. - Basic elements for approximating any  surface of revolution. 

small  approximating elements, the actual surface of revolution can be approached as 
closely as desired. On the right side of figure 8, the cone (n + 1) is shown going either 
way so  as to accommodate either an increasing o r  a decreasing slope. The left-hand 
cone, cone (n - l), could have been shown this way too; however, the figure would then 
be too complicated. 

EQUATIONS FOR SINGLE CONICAL ELEMENT 

Before proceeding with the derivation of the equations for the general case, the 
method for a single conical element will be exposed. Figure 9 shows a developed ap- 
proximating surface in the form of a truncated right-circular cone. This cone is labeled 

13 
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Involute 

r Developed cone n 

- x  

Figure 9. - Developed conical surface and involute. 

n and is developed in a plane x-y. The x-y plane, representing rectangular Cartesian 
axes, is tangent to the cone surface, with the x-axis coincident with any arbitrary gen- 
erator of the cone surface. 

Coordinates of any point on the involute can be read directly from figure 9 as follows 

or  as 

For a particular width of involute strip, the surface a rea  of the surface of revolu- 
tion can be obtained once the s t r ip  length is known. The length of the involute from the 
inner boundary of the developed cone and a point designated by S is obtained from fig- 

ure 9. A differential element of length is dS = dx + dy and from equations (Al): {= 

d S = p  no 77 ns dVns 

14 
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whence 

The area of the surface of revolution in figure 9 is very closely 

A = VOS 

A general surface of revolution, as approximated by the elements shown in figure 8, 
has been developed in figure 10, where for the sake of clarity the cone (n + 1) is assumed 
to decrease in diameter in going from left to right. In some cases, a plane annulus may 
be required as an approximating element for  the surface, but this produces no complica- 
tions since this is a special case for a cone. The dimensions r and Au are ,  in gen- 
eral ,  readily available from a drawing or description of the surface of revolution. And 

Figure IO. - Development of surface shown i n  f igure 8. 
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the quantities p and q are readily derived from r and Au as follows: 

and 

- rns 
Pns -.- sin qn 

In this work the surfaces are rotatior,ally symmetrical; therefore, the involutes will 
be generated from circles (the evolutes). The radii of the involute generating circles a r e  
determined from an arbitrary selection of s t r ip  width, the number of strips, and the re- 
quirement that a smooth transition occur in going from one surface-approximating ele- 
ment to its contiguous element. To preclude overlapping of the s t r ip  elements on the 
surface of revolution, it is necessary that the product VU not exceed the circumference 
of the smallest pole circle for the surface of revolution; that is, rnO 5 rns. 

size of the involute generating circle for any cone n is 
The radius of the circle in the surface of revolution (see fig. 8) for determining the 

Thus, rnO is a constant dependent only on the selection of V ,  w and the requirement that 
adjacent involutes have a common tangent, which means that 

where negative subscripts are excluded. The radius of the involute generating circle for 
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the nth surface element is 

which is inversely proportional to sin q n  for any particular selection of I/ and w. 
When qn  is zero, pno becomes infinite. For this case, pno = pns = m ,  the surface 
element is a cylinder and the involute becomes a straight line in the plane of develop- 
ment. On the cylinder this line becomes a helix. For qn  = r/2 radians, the surface 
element is a plane annulus. Therefore, in general, a surface of revolution can be de- 
veloped into a ser ies  of involute and helical str ips.  

of the first involute generating circle is pn 1, 
namely, 

In figure 10 the composite involute curve is shown starting at the x-axis. The radius 
and is obtained from equation (A9), 

The first segment of the composite involute, starting at the x-axis is extended through 
cone (n - 1). 
cause the radius vector to the involute also corresponds to a slant height along the cone. 
The definition of the angular argument y is readily obtained by reference to figure 9 and 
equation (A2). Equation (A8) implies that 

It is more convenient to use polar coordinates in defining the involute be- 

where negative subscripts are excluded. 
It will be shown that equation (A8), establishing the common tangency of contiguous 

elements of the composite involute curve, is a consequence of rnO being constant. By 
rearranging equation (A2) and exchanging j for s, 
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and, therefore, 

From figure 9, noting that j is exchanged for s, 

Pnj - rnj 

Pno 'no 
--- 

and, similarly, 

Also from figure 9 it can be seen that 

and from equation (A7) 

Substituting equations (A14) and (A15) into equation (A13) yields 

Equation (A16) substituted into equation (A12) shows that 
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Thus, equations (A10) and ( A l l )  are identical; and therefore, 

- 
qnj - qn+(-l)j, j - ( - l ) j  

or 

- 
qn1 - 77,-1, 2 

Tn2 = ‘%+I, 1 

EQUATIONS FOR SERIES OF CONICAL ELEMENTS OF 

MONOTONICALLY INCREASING S IZE 

The development, in the x-y plane, of a ser ies  of contiguous cones to the left of the 
cylinder in figure 8 is shown in figures ll(a) and (b). 
cones a r e  labeled (n - 3) ,  (n - 2), and (n - 1). 
here to establish a reference. 
however, it is convenient to start at an end cone (such as at the left-hand end). 

To be consistent with figure 8, the 
Cone (n - 4) is the initial cone and is used 

Generally, the development can be started anywhere; 

i 

symmetry 

(a) Cross section of part of surface of revolution for OApn L d 2 .  

Figure 11. - Development of series of contiguous cones to left of cylinder shown in figure 8. 
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Pn-3,1-Pn-4,2 ---__ 
X 

(b) Composite involute generated on developed contiguous cones. 

Figure 11. - Concluded. 

From figure 11(b), it can be seen that successive values of the composite involute 
coordinates x and y can be written in terms of the immediately preceding values. 
Establishing the relations provides recursion formulas for determining points on the in- 
volute curves for each cone. From figure l l (b) ,  it is apparent that 

Recalling that 



and algebraically adding x and then y increments, the following equations are ob- 
tained: 

EQUATIONS WHERE CONES ONLY ARE USED FOR APPROXIMATING 

A STREAMLINED SHAPE 

Before proceeding to the case where a cylinder is one of the surface-approximating 
elements, the case where the surface of revolution has a tear-drop shape and is approxi- 
mated by cones only will be considered. In the latter case, the composite involute curve 
will close (radii of curvature will decrease) when the approximating cones have a vertex 
half angle ‘pn > 7r/2 because the radius vectors defining the involutes will cross over to 
the other side, as can be seen in figure 10 for cone (n + 1). 

In equation (A18), the algebraic sign of the second term is dependent on whether rn2 
is greater or less than rnl. Multiplying the second term of equations (A18) by 

where the ratio 0/0 is defined to be zero, yields the equations for xn2 and yn2, which 
for a tear-drop shape approximated by a ser ies  of colinear and contiguous cones become . 
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EQUATIONS WHERE CONES AND CYLINDERS ARE USED 

FOR ANY SURFACE OF REVOLUTION 

The last step in the development of the equations for s2 and yn2 is the addition 
of a term to account for  a cylindrical element in the surface of revolution. The incre- 
ments in x and y can be read directly from the diagram of figure 12. The developed 

Figure 12. - Development of cone-cylinder-cone surface of revolut ion showing composite involute curve. 

helix is tangent to the connecting involutes at each end, establishing its slope in the x-y 
planes as the tangent of the angle vn1. From the figure then 

Axn = hn c o s ( g 0 l  
sin( a c q  
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The magnitudes of angle ~ c h  and angle cicg can be read directly from figure 12 as 

( Y C L  = B - q n l  

(GCF = ( F G k  - ( G O 6  

In the determination of the x and y increments for the cylindrical element, 

and 

whence, 

The denominators of these equations can be modified by the use of equation (A2); then 

I -hn cos ‘Unl 
AX = n cos arctan qnl 

J hn sin ‘Unl 
AYn = 

cos arctan vnl 

The addition of the x and y increments from equation (A20) to equation (A19) will give 
the values of x and y when a cylinder also is used in the approximation of a surface of 
revolution. When this addition is made, the generality of the equation can be preserved 
by multiplying the term contributed by the cylinder by an operator f n  which has the 
following values : 
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fn = 0 when rnl # rn2 

f = 1 when rnl - n - rn2 

Making these substitutions results in a pair of general recursive equations for  x and y 
for developing double curved surfaces of revolution, namely, 

For the determination of points on the composite involute curve at locations, on the cylin- 
der, designated by the subscript ns, the equations a r e  modified to read as follows: 

LENGTH OF COMPOSITE INVOLUTE CURVE 

A formula for computing the length of the composite involute curve to any location 
denoted by the subscript ns is developed here. Equation (A3) can be modified by the 
substitution suggested by equation (A2), where 

then 
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For a set of contiguous involutes plus a segment of the nth involute 

Complications arise where a helix, resulting from the use of a cylinder as an approxi- 
mating element, is interspersed in the composite curve. 
seen that the length of the helical element is 

Referring to figure 12 it is 

hn 
cos arctan qnl 

Since it may be desired to obtain the length of the helix to any point designated by the 
subscript s on the helix, the segment of the cylinder is more conveniently defined by 
substituting Uns - Unl for h. Thus the length of helix for the nth cylinder is 

Uns - Unl 
cos arctan qnl 

s = ~ 

In order to combine the lengths of the helical elements with the lengths of the involute 
elements, use of the operators applied in equations (A22) can be made here, namely, 

0 when rnl # rn2 

= 'n2 when rnl 
rnl - rn2 and fn = I l l  

l r n l -  'n21 

For application to equation (A24), the first operator can be written as 

and 
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where 0/0 is defined as equal to zero. The second operator can be rewritten as fi 
where 

0 
f .  = 
1 

1 

# ri2 when ril 

1 s = -  
2 ci i=l 

noting that qn+l, - - qn2. 

TRACE OF COMPOSITE INVOLUTE CURVE ON SURFACE OF REVOLUTION 

Formulas defining the trace of the composite involute curve on the surface of revo- 
lution a re  developed here. The axes a r e  labeled u, v, and w in cyclic order for a 
right-hand orthogonal system. The u-axis is made coincident with the axis of symmetry 
of the surface of revolution. These axes and the other pertinent dimensions a re  shown 
in figure 13. Figure 13 (b) shows the first two approximating cone elements developed in 
the x-y plane, as defined previously, where the x-axis is located in the u-w plane and the 
x-y origin is located a t  the beginning of the first conical element. For the sake of clar- 
ity, the addition of a cylindrical element will be made later. 

simplify the derivation, the value of ell is assumed to be equal to zero. This gives 
The u,v,  w coordinates a re  obtained as functions of p, q ,  and 0 .  In order to 
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(a) Two contiguous cones approximating a surface of revolution. Curve kac is involute 
for cone 1; curve nfcd i s  involute for cone 2. 

t 

(b) Planar development of surface shown in f igure 131a). Corresponding points have the same notation. 

Figure 13. - Development of composite involute for general surface of revolut ion approximated by cones. 

.. . . . . . . . .. _.... - . . .... . - - 
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the trace for one composite curve which starts with the coordinates 

Vll = o  

The traces of other composite involutes which would be the centerlines of other strips 
can be obtained by setting B n l  = 2an/v radians, the initial angle about the u-axis for the 
nth strip. 

In figure 13, corresponding points on the surface of revolution and on the plane of 
development a r e  labeled identically. Equivalence of a r c  lengths in the u, v, w coordi- 
nate system and the x-y plane will be used to calculate the values of 8 and its incre- 
ments +. From figure 13(a) 

n L G = pI2el2 sin q1 

whence 

y12 - 711 e.,, = 
sin q 1  ld 

For continuity of values of 8 

Similarly, for the a r c  $4 from figure 13 (a) 

and from figure 13(b) 
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whence 

722 - 721 
s in  'p2 +22 = 

Note that since ell  = 0, then q12 = q21 = e12. Again from figure 13(a), it can be seen 
that 

y22 - 1/21 
s in  q2  022 = 012 + 

y12 - y11 y22 - 721 - +  - - 
sin 'pl s in  'p2 

and further that 

'32 = '22 + *32 

- y12 - yll + y22 - y21 + y32 - y31 - 
sin 'pl sin 'p2 s in  'p3 

and that, generally, 

or written in terms of y and cp 

and 

for  intermediate points. 

I 
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Figure 14. - Surface o f  revolution in form of right-circular cylinder. 

A formula for Bn2 can now be written in more general form where, in addition to 
the cones used in the approximation, cylinders can also be used. In figure 14 a surface- 
approximating element in the form of a right-circular cylinder is shown. The same 
cylinder in the plane of development is shown in figure 12 as element n. From figure 14 

n 

9' = 'n2*C/n2 

and from figure 12 

whence 

9d = hn tan(vn1 - yn1) 

From equation (A2) it is seen that 

rlnl  - Y n l  = arctan r ln l  

therefor e 
- 
ad = h, tan arctan qnl 

= hn Vnl 
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- n 
The a r c  @is equal to the straight-line segment yd;  then 

whence 

This is the increment in the argument 6 in going from one end of the cylinder, along a 
helix, to the other. 

be written. 
sulting in 

An equation for On2 which includes both conical and cylindrical elements can now 
The operators used in equations (A21) can be used to advantage here, re -  

Referring to figure 13 (a), equations for the u, v, w coordinates of the composite 
involute can now be written as the following set  of recursive relations. 

vn2 - - rn2 sin On2 

wn2 = rn2 cos On2 
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APPENDIX B 

COMPUTER PROGRAM 

A geometry calculation code, STRIP, was programed to compute the planar coordi- 
nates needed to define the basic involute ribbon of width w. N number of these ribbons 
are used to fabricate a particular rotationally symmetric surface by a method described 
in this report. Specific equations used by the program a re  shown in the order of their 
use in the program. Specifications of input data a re  given. Outputs from a sample prob- 
lem a r e  included to demonstrate the program usage. The problem was programed en- 
tirely in FORTRAN IV language for a 7044/7094 DCS computer. 

PROBLEM DESCRIPTION 

To solve for the plane coordinates that define a ribbon, the body must be divided into 
a number of cones along the axis of symmetry. 
f rom left to right and is associated with a left cone radius and the cone height (see 
fig. 15). The cylinder is considered to be a special case of the cone. When a large cone 

Each cone is numbered consecutively 

- h n - ~  -“\I-I 
Figure 15. - Basic element for surface of revolution showing cone In).  

height is specified, up to eight intermediate cones can be specified to help smooth the 
ribbon profile. 

Equations 

The calculations in this program concern themselves with defining the ribbon in 
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terms of p, y, x, and y. The equations used are developed in appendix A and rear-  
ranged in this appendix to facilitate programing. Separate equations for the cylinder 
case were developed. 

Cone equations. - The cone equations are as follows: 

(1) Cone constants: 

n7 1 
r 

- -- 
sin 'pn 

Pn, m 

(2) Polar data: 

(3) Cartesian data: 

where m designates the intermediate radii for cone n. No intermediate radii a r e  
allowed for the cylinder. 

Cylinder ~. equations. - The cylinder equations are as follows: 

(1) Polar data, for the cylinder in the initial position (n = 1): 



(2) Polar data, for the cylinder in any position except initial position: 

- - %, 1 -%-1,m -%,2  

yn, I - yn-1, m - yn, 2 
- - 

(3) Cartesian data, for  the cylinder in the initial position: 

2 =p1,2 cos y1,2 I 
y1,2 = 4 , 2  sin y1,2 J 

(4) Cartesian data, for the cylinder in any position: 

Input Data 

The input into STRIP consists of three card formats. The information required to 
enter into these cards is described here. Included in the description is the number of 
input cards required. The actual formats of the cards follow the description. 

Description. - - The following information is required to enter into the STRIP card 
formats : 

(I.) Identification: The first card of each case contains a descriptive heading which 
will appear in the output as a heading in various places. 

(2) Ribbon data: The second card specifies 
(a) The total number of radii starting from left to right associated with each 

cone or cylinder, including the final closing radius 
(b) The total number of ribbons 
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(c) The width of ribbon (If the given width is too large to be consistent with the 
smallest radius, the program will compute and use a corrected ribbon 
width. ) 

by contiguous cones. For each cone or  cylinder, the following data a r e  specified. 
(3) Cone data: The third and succeeding cards describe the model as it is simulated 

(a) The cone index number 
(b) The number of intermediate equal-height cones to be added (A maximum 

number of eight cones may be added. For the cylinder (a special case of 
the cone) case, a 1 is entered. For the final most right-hand radius, a 0 
(zero) is entered. ) 

(c) The actual value of the radius 
(d) The cone height 

Data for two cones may be specified on each card. A card need not be full but the 
first se t  of columns must be filled. The read operation ends with a blank card o r  a 
card with the first data field blank. Cases may be stacked. Each subsequent case 
starts with an identification card. 
units used. 

The input data a re  independent of the system of length 

Card formats. - Examples of card formats a re  

_. 

1 5 6  10  11 20 
Number of Number of Width of ribbon, w 
radii, NR ribbons, v 

X X X. Mzxx 
.- - 

(1) Card 1: Identification (Format 9A6) 

- - - ._ - . . 

5 
Cone index, 

n 

X 

. . ~~ 

11- I 

30-  
Cone height, 

hn 

x . m  

54 columns may be used for a descriptive heading 
. -  - 

35 40- 
n m 

x x x.xxxx x.xxxx 

(3) Card 3: Cone radius and heat data (Format 2 (215, 2F10.0)) 

20 

inter mediate 
radii, m 
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(4) Blank card (last card) 
t - . - .. - - . . 

In these formats X represents a. numerical digit: 
(1) X indicates that the field contains an integer and is right justified in the card 

field. 
(2) X. XXXX indicates a fixed decimal point number with the decimal point occur- 

ring anywhere in the card field except the first position which is usually reserved for 
the sign of the number. 
- Problem limits. - There a r e  size restrictions which must be considered due to 

core storage size. The maximum number of cones is set  at 100. Due to printing limi- 
tations, eight intermediate cone radii may be specified to smooth ribbon data for cones 
with large cone heights. 

to  the maximuni number 100. To facilitate changing the model, the cone data cards can 
be in any order as long as each card has an index number in the first card field. If two 
of more cone data cards have the same index, the last cone data card read will  be used. 

Cone numbering. - Numbering starts with index number 1 and must be sequential 

0 utpu t Data 

The printed output consists of the following: 
(1) The input 
(2) Complete cone data including intermediate radii 
(3) Computed polar data, polar radius and angle 
(4) Computed x-y coordinate data of the ribbon centerline 
(5) Strip length against model length 

EXAM PLE 

A listing of the program with one complete example of a jet engine nozzle plug 
(figs. 3 and 16) is presented which includes a listing of input cards and a computer listing 
of the output data. 
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7.734 R 

-32.68 

Figure 16. - Input data for sample problem (jet engine nozzle plug). 

Computer Program STRIP: Program Listing 

d I R F T C  S T R I P  

C 
C 
C 
C 
C 
C 
C 
C 
C 

1: 

C 
C 
C 
C 
C 
C 
C 
C 
C 

r 

C A S E S  PAY R E  STACKED. Y E X T  CASE S T A R T S  W I T H  T I T L t  C A R D .  

C 
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e I N I T I A L I L A T I O N S  
C 

300 NMAX = 0 
DO 1 I=1,100 
DO 2 J=1,10 
R ( I , J )  = 0.0 
R O ( I , J )  = 0.0 
E T A ( 1 r J )  = 0.0 
G A M ( I , J )  = 0.0 
X ( I , J )  = 0.0 
Y ( 1 . J )  = 0.0 

2 C t i N T I l u U E  
H ( I )  = 0.0 
M ( I )  = 0.0 
P ( I )  = 0.0 

TPI = 2 . 0 * 3 . 1 4 1 5 9 2 6  
1 C O N T I N U E  

C 
C I N P U T / O U T P U T  I D  AND PROBLEM DATA 
C 

R E A D  ( 5 9  901  1 I D  
WRITE ( 6  r 9001 
W R I T E ( h r 9 0 2 )  I D  
R E A D ( 5 9 9 0 3  1 FJC,NU,W 
W R I T E ( 6 9 9 0 5 )  NCV NIJV W 

10 R E A D ( 5 9 9 0 4 )  I ~ J ~ A ~ H I K T L , C , D  
IF(L.EQ.0) GO T O  11 

M ( I )  = J 

H ( I )  = B 
I F ( K . E Q . 0 )  GO 13 LO 
M ( K )  = L 

H ( r 0  = D 
GO TU 10 

11 C O N T I N U t  

Y M A X  = M A X O ( N M 4 X r I r K )  

R ( 1 1 1 )  = A  

R ( K r 1 )  = C 

C 
C CHECK FOR C O N S I S T E N C Y  
C 

5 

6 
C 

RU = NU 
M I N R  = W * R U / T P I  
CHECK!? = K ( l t 1 )  
DO 5 I = l r N M h X  
CHECKR = A M I N l ( C H E C K R r R ( I r 1 ) )  
CUNTI;NUE 
I F ( b f I N I . L T . C H E C K R 1  G O  TO 6 
W = CHECKR*TPI /RU- .OOl  
W R I T E ( h r 9 1 5 )  W 
NMAX = N F A X - 1  

C COMPUTE L U P P L E T E  R M A T R I X  
C 

DO 12  I = l , N Y A X  
L = P ( 1 )  
R I  = R ( I t 1 )  
K J  = K ( I + l r l )  
R J P I  = R J - R I  
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C 
C 
C 

C 
C 
C 

DEHIJG N I  ~ R J T R J N I  r L  
DO 13  J = l , L  
A = J  
0 = L  
SLlJPE = A / B  
R ( I T J + l I  = R I + S L O P E * R J M I  

1 3  CQNTIRiUE 
1 2  C O N T I N U E  

OUTPUT C 3 M P U T E D  P L U S  INPUT D A T A  

C O M P L T E  P O L A R  DATA 

CYLI lvn t i i  C A S E  

COMPUTE X-Y C O n R 3 1  N A T E  D A T A  

DO 2 0  I = l r N V A X  
L = P ( I )  
T E S T  = R ( I + l , l ) - R ( ! , l )  
I F ( T t S T )  2 1 ~ 2 2 ~ 2 3  

2 1  w = 1.0 
F = (2.0 
GO TC 74 

F = 1.0 
GO TQ 2 4  

2 2  Q = C O O  
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901 F O R F A T (  9 A C )  
902 F O R V A T ( l e 0 ,  5 x 9 1 4 4 6 1  
903 F O R F A T ( 2 1 5  , F l D . U , 2 1 5 )  
904 FORMAT(  2 ( 2  I 5  9 2F 10.0 1 
905 F O R M A T ( 1 H O p  5 X t 1 6 H F I X E D  I N P U T  D A T A /  

1 5Xq18HNUMBEK 3F CCJNES = rI5/ 
2 5 X , 3 9 i N U M R E R  3 F  S T R I P S  ON THE C l R C U M F t R E N C E  = , 1 5 1  
3 5 X p 2 9 i R I R B O N  r l I O T H  OF EACH S T R I P  = , F 1 0 , 5 )  

906 F O R K A T ( l H 0 ,  5 X 9 1 9 H V A R I A B L E  I N P U T  D A T A /  
l l X , 4 H C 3 N E , 6 X , l O i C O ~ t  RADII, 8 x 9  4 H C O N E , 3 O X ~ 1 R t i I N T € R M E D I A T E  R A D I I /  
22X,2l.l"lJ9 6 X 9 1 4 1 , 9 X 9 1 q 2 ,  9 X 9 2 H H T 9  8 X ~ L H l , 9 X ~ 1 H 2 , 9 X , 1 H 3 , 9 X 1 1 M 4 1 9 X 1  
3 1 H 5  9 x 1  1 H 6  r 9 X  9 1 Y 7  9 9 X  * 1 H H / /  1 

907 FOK?-IAT( l H 0 1  5 x 1 1  9HCOMPUTED POLAR D A T A /  

908 FORMAT( 2 X , 2 t ~ N 0 ~ 6 X ~ l H l r 9 X , l H 2 ~ 1 ~ X , 1 H 2 , 9 X ,  1 H 3 , 9 X 1  1 H 4 , 9 X * l H 5 r  
l l X , 4 H C 3 N E ~ 6 X , L l Y P O L A R  R A D I X , 7 % ,  3 4 X 9 1 6 H I N T E R M E D I A T E  RHO)  

1 Y X  1H6 ,9X  9 1 H 7  9 9X 9 1ti8 / /  1 
909 FORMAT(  1 k 1 0 ,  5X919HCUMPUTED POLAR D A T A /  

1 1 X I 4 H C 3 N E , 6 X , l 1 H P n L A R  ANGLE,7X,  3 4 X 9 1 8 H I N T E K M E D I A T c  GAMMA) 

l l X ~ 4 t i C 3 ~ E ~ 6 X ~ 1 2 i X - C ~ ~ R ~ l ~ A T ~ ~ 6 X ~ 3 4 X ~ l 9 ~ I ~ ~ T ~ ~ M E ~ ~ A l ~  X - D A T A )  

11 X , 4HC J N E  , 6 X  

910 FORMAT( l H 0 9  5X,ZSHCf lMPlJTEU X-Y  COORDINATE D A T A /  

912 F O R F ' 4 T (  1 H 0 ,  5 X , 2 8 H C O V P U T E D  X - Y  COORDINATE D A T A /  

913 
9 1 4  

1 2 r l  Y-CUORD I NATE 9 6 X  , 3 4 X  9 19H I YT t R M E 0  I A T E  Y-[)A T A  
FURMAT(  l H O 9  I 4  t 1 X  9 1 1 F 1 0 . 5  
F L l f i  ?'! 4 T ( 1 HO 9 I 4 9 1 X 

E N 0  

2 F  10.5 ,1 OH e***: 2: * **  d F 10.5 ) 
9 1 5  F O R V A T (  5X,33HC34REGTEO i i I R R O N  H I U T H  IJF EACH S T R I P  = ,F10.5) 

STRIP Dictionary 

FORTRAN 
symbol 

ETA 
GAM 
H 
ID 
NR 
NU 
R 
RO 
W 
X 
Y 

Definition or equivalent 
mathematical symbol 

r7 
ribbon polar coordinate, y 

cone cylinder height, h 
title and problem identification data 
total number of radii from model data 
V 

model radii, r 
ribbon polar coordinate, p 

ribbon Cartesian coordinate, x 
ribbon Cartesian coordinate, y 

w 
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Listing of Input Cards 

SAMPLE PROBLEM - PLUG 
--2- ____.~-___ 

1 8 2.99 3 .1425  8 3 . 5 8 3 1 0  3 .1425  

3 6 5 . 9 5 5 3 1  ex- 
a 7.14172 3 . 1 4 1 5  

9 i o - -  1 7 . 7 3 4 8 2  1 .23  

1 3  5 0  e 2 5  

3 8 4 . 1 7 6 2 0  3 .1425  4 8 4 . 7 6 9 3 1  3 . 1 4 2 5  
6 >-3.14L2 

7 8 6 . 5 4 8 6 1  3 . 1 4 2 5  
1 7 . f 3 4 6 2  1.23 

~. 

- -~ 
1 1  8 7 . 7 3 4 3 2  i.0 1 2  8 7.0 1.59 

l -zT 1 4  2 . 1 4  

Listing of Output Data 

S T R I P  - A PRllCRPM Tn A P P R O X I M A T E  4 ROOY O F  R E V O L U T I O N  BY A S € R I € S  UF CONTIGUOUS CONES 
OEVELOPEJ FROM I I l V O L U T E  CURVE S T R I P S  

SAMPLE PRORLEU - PLUG 

F I X L O  I V P U T  OAT4 
NUMBER OF COY‘S = 13 
NUMSER GF S T R I P S  3rd THE C I R C U M F E R E N C E  = 50 
RI88fl’u W I O r H  flF E A C H  S T R I P  = 3.25000 

V A R I A H L k  I N P U T  3 P T A  
CONE C O ‘ i t  R A D I I  

NO 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1  

12 

13 

1 

2.S9UOO 

3.56310 

4.11620 

4.76931 

5.36241 

5.95551 

6.24d61 

1.14112 

7.134112 

7.73482 

7.73402 

7.C0300 

5.77000 

2 

3.58310 

4.17620 

4.75931 

5.36241 

5.35551 

6.54861 

7.14 172 

7.73482 

7.13482 

1.13452 

7.30000 

5.77 000 

2.1 4000 

C O M P L J T E J  POLAR 2 A T A  
CONE POLAR R 4 0 1 1  

NO 1 2 

1 16.1220t) 19.31’79b 

2 19.’31498 22.51796 

3 22.51759 25.71557 

4 25.71599 28.91397 

5 28.i1397 32.11195 

6 32.11196 35.30994 

7 35.30335, 38.53734 

LONE 
H T  

3.14250 

3.14250 

3.14250 

3.14250 

3.1425U 

3.14250 

3.14250 

3.14250 

I. 23000 

1.23000 

2.00000 

1.59000 

1.49000 

******+* 
****e*** 

1 1  

3.06414 

3.65724 

4,25034 

4.84345 

5.43655 

6.02965 

6.62275 

7.2 15 11b 

7.13482 

7.73482 

7.64297 

6.84625 

5.31625 

1 

16.52175 

19.11973 

******** 27.91134 

+(.+*t+lp4 26.11574 

****+*+* 29.31372 

***+**** 32.51170 

******** 35.70910 

2 

3.13827 

3.73137 

4.32448 

4.91758 

5.51068 

6.10378 

6.69689 

7.28999 

7.55111 

6.6925U 

4 - 862 50 
2 

16.921 50 

LO. 11948 

2 3.31709 

26.5154Y 

27.71347 

32.71145 

36.10885 

I N T k R M t D I A T E  R I D 1 1  
3 

3.21241 

3.80551 

4.39862 

4.99172 

5.58482 

6.17792 

6.77103 

7.36413 

7.45926 

6.53R75 

4.40875 

4 

3.28655 

3.87965 

4.47275 

5.06586 

5.65896 

6.25206 

6.84516 

7.4 3 13 2 7 

7.36741 

6.38500 

3.95503 

5 

3.36069 

3 . ( I  53 19 

4.54689 

5.14000 

5.13310 

6.32620 

6. 11930 

7. ‘P 1241 

7.L7556 

6.23125 

3 . ‘>!I 125 

I N T E R M C O I A T E  R H t i  
3 4 5 

17.32124 17.72099 18.12074 

20.51922 2O.YlH91 21. ilR72 

23.71684 24.11658 24.51633 

26.91524 27.31498 27.11473 

30.11322 3Cl.51296 30.91271 

33.31120 33.71U95 34.i1069 

36.50860 36.90835 37.30810 

6 

3.43482 

4.02792 

4.62103 

5.21413 

5,80124 

6.40033 

6.99344 

7.58654 

7.18370 

6.07750 

3.04750 

6 

1R.52049 

21.71H47 

24.91h08 

28.11448 

31.31246 

34.5 1 044 

7 

3.50875 

4.10205 

4.6951 7 

5.28827 

5.86137 

6.47447 

7.06753 

7.66068 

7.091Mi 

5.92375 

2.59375 

7 

18.92023 

22.1 lR21 

25.31583 

28.51423 

31.71221 

34.91013 

37.70784 38.10753 

d 

3.58310 

4.17620 

4.76931 

5.36241 

5.95551 

6.54Mbl 

7.14172 

7.73482 

7.00003 

5.77000 

2.14003 

P 
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8 38.50797 41.70595 ******** 38.90771 39.30746 39.70721 40.10696 40.50670 40.90645 41.30623 

9 0. 0. ******** 0. 

10 0. 0. ******** 0. 

11 22.42824 20.29753 e+****** 22.16190 21.89556 21.62922 21.36288 21.U9654 20.83021 20.56387 

12 11.44030 9.43007 e******* 11.18902 10.93774 10.68646 10.43519 10.18391 9.93263 9.68135 

13 6.23717 2.31326 ******** 5.74668 5.25619 4.76570 4.27521 3. 78473 3.29424 2.80375 

COMPUTED P O L 4 R  3 A T 4  
CONE POLAR ANGLE 
NO 1 2 

1 N T E R H E U I A T E  GAMMA 
1 2 3 4 5 h 7 8 

1 0-27916 0.51578 ******** 0.30724 0.33583 0.36487 0.39433 0.42419 0.45439 0.48493 

2 0.51578 0.77142 ******** 0.54691 0.57831 0.60996 0.64184 0.67394 0.70625 0.73875 

3 0.77142 1.33RZR ******** 0.80427 0.83729 0.R7045 0.90376 0.93720 0.97077 1.00447 

4 1.C3828 1.31236 ******** 1.07221 1.10623 1.14036 1.17459 1.20891 1.24331 1.27783 

5 1.31236 1.59140 ******** 1.34701 1.38173 1.41651 1.45137 1.48628 1.52127 1-55631 

6 1.59140 1.87399 ******** 1.62655 1.66176 1.69701 1.73232 1.76767 1.80307 1.83R51 

7 1.R7399 2.15923 ******** 1.90952 1.94508 1.98069 2.01633 2.05200 2.08771 2.12345 

8 2.15323 2.44647 ******** 2.19503 2.23087 2.26674 2-30263 2.33855 2.37450 2.41047 

9 2.44647 2.44647 ******** 2.44647 

10 2.44647 2.44647 ******** 2.44647 

11 2.44547 2.39087 ******** 2.40188 2.35732 2.31280 2.26832 2.22389 2.17950 2.13516 

12 2.090R7 1.50369 ******** 2.01685 1.9429tl 1.86927 1.79574 1.12240 1.64927 1.57635 

13 1.50369 0.01899 ******** 1.29083 1.08094 0.87499 0.67447 0.48176 0.30089 0.13991 

COMPUTED X-Y C 0 3 R O I N A T E  D A T A  
CONE X - L U O R D I N 4 T E  I N T E R M E D I A T E  X-DATA 

NO 1 2 1 2 3 4 5 6 7 

I 15.49789 16.R0660 ******** 15.74806 15.97623 16.18099 16.36095 16.51478 16.64116 16.73884 

2 16.80660 16.14354 **e***** 16.8432R 16.84775 16.81898 16.75594 16.65772 16.52344 16.35223 

3 16.14354 13.356U8 ******** 15.89651 15.61063 15.28537 14.92031 14.51508 14.06941 13.58311 

4 13.05608 7.38944 e******* 12.48829 11.87982 11.23081 10.54151 9.81225 9.04347 8.23567 

5 7.38944 -0.66160 ******** 6.50549 5.58460 4.62764 3.63556 2.G0942 1.55036 0.45953 

6 -0.661bO -10.54255 ******** -1.81179 -2.98953 -4.19328 -5.42140 -6.'.7219 -7.94389 -9-23464 

7 -10.54255 -21.3739L ******** -11.86562 -13.20184 -14.54909 -15.90523 -17.26806 -18.63532 -20.00472 

8 -21.37392 -32.32901 ******** -22.74053 -24.10215 -25.45635 -26.80065 -28.13259 -29.44963 -30.74920 

9 -32.02901 -35.33345 ******** -35.93345 
10 -35.93345 -39.83789 ******** -39.83789 
I1 -39.83789 -46.97554 ******** -40.69217 -41.56240 -42.44600 -43.34039 -44.24305 -45.15144 - 4 b - b b 3 0 0  

12 -46.97554 -53.29308 ******** -47.83372 -48.68324 -49.51823 -50.33311 -51.12267 -51.88207 -52.60687 

13 -53.29308 -55.18768 ******** -54.46276 -55.34787 -55.92966 -56.21394 -56.22882 -56.02107 -55.65119 

COMPUTED X-Y C 0 3 R D I N A T E  D A T A  
CONE Y - C O O R D I N A T E  I N T E R M E D I A T E  Y-DATA 

N O  1 2 1 2 3 4 5 6 7 

8 

8 

1 4.44234 9.52889 ******** 4.99669 5.57649 6.18071 6.80829 7.45810 8.12897 8.81965 

2 9.52889 15.69856 ******** 10.25533 10.99757 11.75417 12.52364 13.30444 14.09495 14.89355 

3 15.69856 22.15508 *****e** 16.50825 17.32085 18.13458 18.94760 19.75806 20.56406 21.36371 

4 22.15508 27.95369 ******** 22.93624 23.70522 24.46007 25.19882 25.91952 26.62020 27.29890 
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5 

6 

7 

8 

9 

10 

11 

12 

13 

27.95369 

32.10503 

33.69323 

32.03130 

26.711 59 

23.95033 

21.18908 

17.94000 

18.45884 

32.10503 

33.59923 

32.33 130 

26.71 159 

23.35033 

2 1.18 908 

17. W+OOO 

18.45 A84 

24.53803 

******** 
******** 
*******+ 
******** 
******** 
******** 
******** 
******** 
******** 

2R.58264 29.18385 29.75542 30.29550 30.80228 31.27395 31.70877 

32.46107 32-77528 33.04610 33.27204 33.45166 33.58358 33.66652 

33.68056 33.60943 33.48485 33.30590 33.07176 32.78170 32.43505 

31.56997 31.05071 30.47327 29.83749 29.14333 28.39083 27.58015 

23.95033 

21.18908 

20.61498 20.08873 19.61058 19.18061 18.79873 18.46497 18.17885 

17.77343 17.67878 17.65372 17.69541 17.80060 17.96563 18.18643 

19.15903 20.04390 21.02410 22.01216 2f.YZ841 23.70564 24.29097 
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